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a b s t r a c t

In the present work, the non-linear phase dispersion induced by slice selective frequency-swept pulses is
analyzed, in order to assess NMR signal attenuation due to molecular diffusion during such pulses. In par-
ticular, theoretical considerations show that diffusion-weighting can be calculated based on the non-lin-
ear phase spatial derivative (i.e. the phase gradient), and that the phase of B1 field at the instant of the flip
does not contribute to phase scrambling and diffusion-weighting, yielding a simple analytical expres-
sions. The theory is validated by confrontation with numerical simulations of the Bloch equations includ-
ing diffusion, performed for a pair of hyperbolic secant pulses and a pair of CHIRP pulses. The simple
though general conceptual framework developed here should be useful for the understanding and the
exact calculation of diffusion-weighting in NMR sequences using frequency-swept pulses.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Adiabatic pulses provide an efficient way to perform broadband
and homogeneous magnetization flip, even in the presence of
strong B1 inhomogeneities [1]. This property has for example been
exploited to perform slice or volume selection, such as in the LASER
spectroscopy sequence [2], in the Pseudo-LASER spectroscopic
imaging sequence [3] or in various imaging sequences [4–7].
Furthermore, trains of adiabatic pulses may be used to generate
contrasts based on relaxation in the rotating frame [8,9].

When applied in conjunction with a slice selection gradient, an
adiabatic pulse generates a non-linear phase throughout the se-
lected slice along the direction of the gradient. This is due to the
frequency-swept nature of adiabatic pulses, where the magnetiza-
tion is flipped when the frequency of the pulse is equal to the
Larmor frequency X. This phase can then be refocused by a second,
identical pulse [10,11], in order to prevent signal loss due to inco-
herent averaging throughout the slice. It has been argued that the
phase dispersion created by an adiabatic pulse might induce
diffusion-weighting. In their pioneer work [12], Sun and Bartha
proposed an expression for diffusion-weighting induced by trains
of hyperbolic secant pulses, assuming a quadratic phase dispersion
(such as induced by a CHIRP pulse [13]).

When ‘‘zooming” into the elementary events occurring during
frequency-swept pulses, two components can be identified in the
ll rights reserved.
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non-linear phase: the phase acquired in the slice selection gradi-
ent, depending on the gradient strength and on the instant of the
flip tX, and the phase induced by the B1 field orientation itself,
depending on the B1 phase at the instant of the flip. In the present
work, we propose to revisit the origins of the non-linear phase dis-
persion to assess if both the phase variation of the B1 field during
the sweep and the phase acquired in the slice selection gradient
should be explicitly considered when calculating diffusion-weight-
ing. To address these questions, a formalism is proposed that
allows general calculation of diffusion-weighting when fre-
quency-swept pulses are used. An analytical expression is then
derived for diffusion-weighting induced by a pair of slice selective
hyperbolic secant pulses and CHIRP pulses. These expressions are
validated by numerical simulation of the Bloch equations including
diffusion.

2. Theory

2.1. The phase induced during a frequency-swept pulse

An exact evaluation of the rotation induced by an arbitrary
pulse requires composing rotation operators over suitably small
time intervals to account for elementary rotations around a step-
wise constant effective field, rapidly leading to complex analytical
expressions. However, during a frequency-swept pulse, the magne-
tization can be assumed to be flipped around the B1 field at the in-
stant tX when the frequency of the pulse is equal to its Larmor
frequency X [3,6,7,14]. This approximation provides a simple yet
accurate description of magnetization’s behavior during the pulse,
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which was verified by many numerical simulations and experi-
ments [3,6,7,14]. It allows for example the calculation of the mag-
netization’s phase during the pulse [3,6,7,14]. Let us consider for
example a frequency-swept pulse of duration Tp performing
slice-selective refocusing. Considering a gradient of magnitude
Gslice oriented along x, the phase evolution for magnetization with
Larmor frequency X = cGslicex and flipped at tX is given by [3,7], UB1

being the phase of the B1 field (Fig. 1):

0 < t < tX : /ðx; tÞ ¼ cGslicetx

tX < t < Tp : /ðx; tÞ ¼ 2/B1ðtXÞ þ cGsliceðt � 2tXÞx
ð1Þ

This phase dispersion can then be refocused by a second, iden-
tical slice selective pulse. Looking at Eq. (1), two components can
be identified in the non-linear phase: the phase acquired in the
slice selection gradient, depending on the gradient strength and
on the instant of the flip tX, and the phase induced by the B1 field
orientation itself, depending on the B1 phase at the instant of the
flip. Since diffusion-weighting is based on phase scrambling, both
components may a priori contribute to signal attenuation. Without
further analysis, the effect of the B1 phase cannot be taken into ac-
count. We will now try to clarify how this B1 phase contributes to
diffusion-weighting induced by frequency-swept pulses.

2.2. Diffusion in an arbitrary phase gradient

The usual definition of k(t) as the moment of a B0 gradient G
will be used:

kðtÞ ¼ c
Z t

0
Gðt0Þdt0 ð2Þ

Using this notation, the signal attenuation due to diffusion dur-
ing duration t in B0 gradients is (D being the diffusion tensor):

AðtÞ ¼ exp �
Z t

0
kTðuÞ � D� kðuÞdu

� �
ð3Þ

It is important to note that the phase induced by a gradient along x
is U(x, t) = kx(t)x, kx(t) being therefore the phase gradient oU/ox
(independent of x). Starting from here, let us consider now a more
general case, where the phase U(x, t) is not solely induced by B0 gra-
dients, but by any other phenomenon, such as frequency-swept
pulses. U(x, t) is now an arbitrary function of x and t, with oU/ox a pri-
ori depending on x and t. However, there is still a strong physical
analogy between this arbitrary phase gradient oU/ox and a B0 gradi-
ent moment kx along x. Indeed, the effect of diffusion will be to
scramble phase and induce signal loss, as induced by a B0 gradient.
Using the gradient operator ~r, the phase gradient is given by:

~r/ðr; tÞ ¼ @/
@x ðr; tÞ

@/
@y ðr; tÞ

@/
@z ðr; tÞ

� �T
ð4Þ
Fig. 1. Evolution of the transverse magnetization M at the instant of the flip tX
during a 180� frequency-swept pulse. M is considered to be instantaneously flipped
by 180� around B1.
It is demonstrated in Appendix A that, since U can generally be
considered locally linear (i.e. the phase gradient oU/ox is constant)
over the distance experienced by diffusing spins during the se-
quence (see Appendix B for the validity of this assumption), the
attenuation due to diffusion is given by:

Aðr; tÞ ¼ exp �
Z t

0

~r/Tðr;uÞ � D� ~r/ðr;uÞdu
� �

ð5Þ

Therefore, there is a formal analogy between k and ~r/ regard-
ing diffusion-weighting. However, due to its more general form
compared to Eq. (3), Eq. (5) can now be used to rigorously evaluate
the effect of the phase induced by a frequency-swept pulse on dif-
fusion-weighting.

2.3. Phase gradient induced during a frequency-swept pulse

The phase gradient evolution during the pulse is given by differ-
entiating Eq. (1):

0 < t < tX : @/
@x ¼ cGslicet ¼ ksliceðtÞ

tX < t < Tp : @/
@x ¼ 2

@/B1

@t
ðtXÞ

@tX

@x
� 2cGslicex

@tX

@x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kB1

þ cGsliceðt � 2tXÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ksliceðtÞ

ð6Þ

In Eq. (6) two components can be identified: the usual slice gra-
dient moment kslice (whose sign is changed at tX by the 180� rota-
tion), and a ‘‘radiofrequency” term kB1 including B1 contribution.
However, during frequency-swept pulses, the magnetization is
flipped when the pulse frequency is equal to X, which can be writ-
ten as oUB1/ot(tX) = cGslicex. Inserting in Eq. (6) yields the following
simplification:

0 < t < tX :
@/
@x
¼ cGslicet ¼ ksliceðtÞ

tX < t < Tp :
@/
@x
¼ cGsliceðt � 2tXÞ ¼ ksliceðtÞ

ð7Þ

In the end, the contribution of the B1 field orientation is can-
celled out when calculating the spatial derivative of the non-linear
phase, so that only the phase induced by the gradient needs to be
considered for diffusion-weighting. In short, when considering dif-
fusion-weighting, the effect of a 180� frequency-swept pulse is
simply to change the sign of gradient moment k at the instant tX.

Note that a similar conclusion is reached if the pulse induces a
90� excitation rather than a 180� refocusing. Indeed, the phase is
simply zero before the excitation (0 < t < tX), then the magnetiza-
tion is instantaneously flipped around B1 and starts precessing
for t > tX [6]:

0 < t < tX : /ðx; tÞ ¼ 0

tX < t < Tp : /ðx; tÞ ¼ /B1ðtXÞ þ
p
2
þ cGsliceðt � tXÞx

ð8Þ

In that case the phase gradient simplifies as well to:

0 < t < tX :
@/
@x
¼ 0

tX < t < Tp :
@/
@x
¼ cGsliceðt � tXÞ ¼ ksliceðtÞ

ð9Þ
3. Methods

3.1. Analytical calculation of diffusion-weighting during a pair of slice-
selective frequency-swept pulses

Following the analysis detailed in the Theory section, diffusion-
weighting induced during a pair of slice selective frequency-swept
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pulses as shown on Fig. 2 (excluding potential spoiler gradients for
simplicity) is easily calculated. It is simply the integral of kslice(t)2,
which depends on tX. Introducing the normalized instant of the
flip a = 2tX/Tp � 1 (�1 < a < 1), and the delay D between the two
pulses, integration of kslice(t)2 yields:

b ¼ c2G2
sliceT2

p
Tp

6
þ a2 D� Tp

2

� �� �
ð10Þ

The above equation allows the evaluation of the diffusion-
weighting factor b as a function of the position for arbitrary fre-
quency-swept pulses when a(x) is known. For example, in the case
of the CHIRP pulse, where the frequency-sweep is linear (THK
being the slice thickness, x varying between �THK/2 and THK/2):

aðxÞ ¼ 2x
THK

ð11Þ

In the case of the hyperbolic secant pulse (HS1) [6], b being the
cutoff factor of the pulse:

aðxÞ ¼ 1
2b

log
1þ 2x=THK
1� 2x=THK

� �
ð12Þ
3.2. Numerical simulations

One-dimension numerical simulations of the Bloch equations
were performed for the sequence of Fig. 2, using home-made pro-
grams written in Matlab (The Mathworks, Natick, MA, USA) on a
1.80 GHz personal laptop. Simulations were performed for a pair
of slice-selective refocusing hyperbolic secant (HS1) pulses, and
for a pair of slice-selective refocusing CHIRP pulses. Pulse parame-
ters were pulse duration to bandwidth product R = 60 and pulse
Fig. 2. Slice selective double spin echo sequence performed by frequency-swept pulses. A
Slice selection gradient Gslice is turned on only during the pulses. From the sequence ch
instant of flip tX, displayed here as a dashed vertical line. On the chronogram the norm
duration Tp = 1 ms (and cutoff factor b = 5.3 for the HS1 pulse).
The sequence parameters were echo time TE = 10 ms (i.e. D =
5 ms), and slice thickness THK = 1.5 mm. Spins were assumed to
be aligned along x at the beginning of the simulation. Time-step s
for the simulation was 1 ls. Simulation was performed for one
million diffusing spins, with diffusion coefficient D = 5 lm2/ms.
This was achieved by randomly displacing spins, at each time step
during the course of Bloch simulation, over a distance equal to the
square root of 2Ds, with a + or � sign randomly drawn for each
spin’s displacement. Total computing time for the 106 spins was
�130 h. The NMR signal was then evaluated over 500 pixels span-
ning the slice thickness, by averaging the transverse magnetization
of spins present in each pixel at the end of the sequence. The ref-
erence signal to determine attenuation was simulated by setting
D = 0, which allowed getting rid of imperfections in the slice selec-
tion profile (which was necessary for the CHIRP pulse which
yielded non-flat profile). Simulation was compared to the theoret-
ical diffusion-weighted signal obtained when inserting Eq. (11) (for
the CHIRP pulse) and Eq. (12) (for the HS1 pulse) in Eq. (10), with
signal attenuation equal to exp(�bD). This comparison was done
over 90% only of slice thickness in order to exclude the transition
bands. Note that the unusually high value for the diffusion coeffi-
cient (D = 5 lm2/ms) was chosen to exacerbate signal attenuation,
in order to facilitate comparison between theory and simulation.
4. Results and discussion

The simulated signal attenuation along the direction of the slice
selective gradient is shown in Fig. 3A for the pair of HS1 pulses, and
Fig. 3B for the pair of CHIRP pulses (over 90% of slice thickness to
exclude the transition bands). Although the slice selection gradient
mplitude modulation (AM) and frequency modulation (FM) of the pulses are shown.
ronogram, the time-evolution of kslice and k2

slice can be easily calculated for a given
alized instant of flip a = 2tX/Tp � 1 is also represented.



Fig. 3. Comparison between simulated (light gray line) and theoretical (black line)
signal loss at the end of a pair of slice selective frequency-swept pulses shown in
Fig. 2, for (A) hyperbolic secant HS1 pulses; and (B) CHIRP pulses. Signal attenuation
profiles S/S0 are plotted as a function of the position x along the thickness THK of the
slice, over 90% of the bandwidth to exclude transition bands. For both situations,
R = 60, Tp = 1 ms, D = 5 ms, THK = 1.5 mm, D = 5 lm2/ms.
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is the same for both types of pulses, signal attenuation is much
stronger for the CHIRP pulse, as soon as positions away from the
center of the slice are considered. This is due to the fact that, for
the HS1 pulse, the largest fraction of the slice’s magnetization is
flipped very close to the center of the pulse, which yields the small-
est integral for kslice(t)2: 90% of the bandwidth is indeed swept dur-
ing only �30% of the pulse duration (i.e. |a| < 0.3 for 90% of the slice
thickness).

In both cases, simulations agrees very well with the theoretical
predictions, demonstrating: (i) the validity of the theory based on
phase gradients (Eq. (5)); (ii) the fact that the phase dispersion in-
duced by the phase variation of the B1 field during the frequency
sweep vanishes when considering the effect of this phase on diffu-
sion-weighting (Eq. (7)); and (iii) the analytical expression of diffu-
sion-weighting induced by a pair of frequency-swept pulses (Eq.
(10)).

In our opinion, beyond its conceptual simplicity, the main inter-
est of using phase gradients as a basis for b-values calculations is
that it allows taking into account diffusion during the pulse. In
addition, exact calculation of cross-terms between the phase gradi-
ent induced by the slice selective frequency-swept pulse and other
phase gradients (such induced by as B0 inhomogeneity or spoiler
gradients) is made possible by integration during the pulse. By
contrast, in their original paper [12], Sun and Bartha considered
only the phase induced at the end of the pulse, which was there-
fore considered to be executed instantaneously, precluding exact
calculation of diffusion effects during the pulse.

An important point of our analysis is that, when considering dif-
fusion-weighting, the effect of a 180� frequency-swept pulse is
simply to change the sign of the gradient moment k at the instant
tX, without any intrinsic effect of the B1 phase modulation on the
signal attenuation. In other words, a slice selective frequency-
swept pulse will never induce a stronger diffusion-weighting than
the sole slice selection gradient. This maximal diffusion-weighting
is only achieved for spins at the very edges of the slice, which are
flipped at the very beginning or the very end of the flip (which is
for example visible in Eq. (10), where a = ±1 leads to the usual
attenuation factor c2G2d2(D � d/3) for bipolar gradient pulses of
duration d = Tp separated by D). The phase gradient appears to be
a fundamental parameter when considering diffusion-weighting
induced by frequency-swept pulses. Interestingly, this echoes a
previous work where we already reported the relevance of phase
gradient to characterize the accuracy of Fourier transformed MRI
and spectroscopic imaging when performing volume selection by
unpaired adiabatic pulses [3]. In that work, phase gradient was also
used to generate a ‘‘sliding apodization window” to perform spatial
apodization on a pixel-per-pixel basis. Note that, in order to calcu-
late phase gradient, we used to explicitly calculate U(x) (i.e. includ-
ing the B1 phase, see Eq. (1)), before differentiating it. In the
present work, Eq. (7) (and subsequent Eq. (B3), cf. Appendix B) pro-
vides a new, simplified way to calculate the phase gradient, where
the B1 phase is not involved anymore.

Although very general, the formalism proposed here is valid
provided the phase induced by the pulse can be considered
‘‘locally” linear, ‘‘locally” meaning here within the distance trav-
eled by spins during the diffusion time. As shown in Appendix B,
this is in general valid, even for thin slices and pulses with high
R factors. However, for some extreme situations (such as micro-
scopic imaging), this assumption may not be correct anymore,
resulting in phase scrambling between regions outside the linear-
ity area.
5. Conclusion

In this work, diffusion-weighting induced by slice-selective fre-
quency-swept pulses was described using the spatial gradient of
the non-linear phase induced by the pulses. It was shown that
phase gradients can be substituted for the magnetic field gradient
moment k in the equation describing signal attenuation due to dif-
fusion (Eqs. (3) and (5)), yielding a convenient way to calculate dif-
fusion-weighting induced by frequency-swept pulses. It was then
shown that the phase gradient does not explicitly depend on the
phase of the B1 field: in the end, as far as diffusion-weighting is
concerned, the effect of a refocusing frequency-swept pulse is sim-
ply to change the sign of k at the time of the flip. This simple result
allows an exact calculation of diffusion-weighting induced by fre-
quency-swept pulses, and should be useful for NMR sequences
involving such pulses.
Appendix A. Signal attenuation in a phase gradient

The time evolution of the complex transverse magnetization W
including diffusion in an arbitrary phase field U(r, t) can be derived
from the Bloch-Torrey equation, writing the frequency under its
general form oU/ot (ignoring relaxation):

@W
@t
¼ i

@/
@t

Wþ ~r � ðD� ~rWÞ ðA1Þ

A solution to this differential equation can be searched, in a
small volume dV around position r, under the form:

Wðr; tÞ ¼ m0AðtÞ expði/ðr; tÞÞ ðA2Þ

In Eq. (A2), m0 is the magnetization density, which is assumed
to be constant in dV. A(t) is the attenuation factor originating from
diffusion. It does not explicitly depend on the position since it is as-
sumed here that the phase derivative can be considered constant in
dV, which means that the effect of phase scrambling is homoge-
neous within the volume considered, as it is assumed when phase
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is induced by B0 gradient. A more detailed analysis about the valid-
ity of this assumption is performed in Appendix B. Injecting Eq.
(A2) in Eq. (A1) yields:

@AðtÞ
@t

expði/ðr; tÞÞ ¼ iAðtÞ~r � ðD� ~rðexpði/ðr; tÞÞÞÞ ðA3Þ

Assuming again that the phase is locally linear within dV (i.e. all
second order phase derivatives are zero), the two successive gradi-
ent operators in Eq. (A3) simplify to:

~r � ðD� ~rðexpði/ðr; tÞÞÞÞ ¼ i expði/ðr; tÞÞ~r/T � D� ~r/ ðA4Þ

Re-injecting this expression in Eq. (A4) finally yields:

@AðtÞ
@t
¼ �AðtÞ~r/T � D� ~r/ ðA5Þ

Solving Eq. (A5) ultimately yields the time evolution of the
attenuation factor resulting from diffusion in an arbitrary time
varying phase gradient in a small volume dV around r (with
A(0) = 1):

AðtÞ ¼ exp �
Z t

0

~r/TðuÞ � D� ~r/ðuÞdu
� �

ðA6Þ
Appendix B. Local linearity of the phase induced by frequency-
swept pulses

The phase at a distance k from position x0 can be expressed as a
Taylor expansion:

/ðx0 þ kÞ ¼ /ðx0Þ þ
@/
@x
ðx0Þkþ

1
2
@2/
@x2 ðx0Þk2 þ � � � ðB1Þ

As far as diffusion-weighting is concerned, assuming local line-
arity is equivalent to say that the second- and higher-order deriv-
ative terms are negligible over the length scale of the diffusion.
Indeed, under this condition, no significant phase scrambling and
subsequent signal loss can occur due to these terms. In that con-
text, the distance k to consider is the average distance traveled
by spins during the diffusion time Td during which the phase is
not refocused (i.e. k2 = 2DTd, D being the diffusion coefficient). For
the second-order derivative, this condition can be expressed as:

DTd
@2/
@x2

�����
������ p ðB2Þ

Taking the expression for oU/ox as given in Eq. (7), introducing
the normalized instant of flip a = 2tX/Tp � 1 (�1 < a < 1), and con-
sidering the phase derivative at the end of the pulse:

@/
@x
¼ cGsliceðTp � 2tXÞ ¼ �cGsliceTpaðxÞ ðB3Þ

Differentiating Eq. (B3), introducing the pulse duration to band-
width product R, and the slice thickness THK, and injecting in Eq.
(B2) ultimately results in the following condition:

R
2DTd

THK
@a
@x

����
����� 1 ðB4Þ
For a CHIRP pulse, a(x) = 2x/THK, which yields the following
condition:

R
4DTd

THK2 � 1 ðB5Þ

For a HS1 pulse, a(x) is given by Eq. (11) [6]. Differentiation of a
and injection in Eq. (B4) leads to:

R
4DTd

THK2

1
1� 4x2=THK2

�����
�����1b� 1 ðB6Þ

Limiting the analysis to 90% of the slice thickness to exclude
transition bands yields the following condition (for the extreme va-
lue reached at x = ±0.9 � THK/2):

5:3
b

R
4DTd

THK2 � 1 ðB7Þ

Taking the usual value for the truncation factor b = 5.3 finally
results in a condition which is similar for CHIRP and HS1 pulses.
In general, this condition will always be satisfied. For example, tak-
ing D = 2.5 lm2/ms, Td = 20 ms, R = 60 and THK = 1 mm, results in
the left-hand side of Eqs. (B5)–(B7) being equal to �0.01. This illus-
trates that, in the vast majority of situations, the phase induced by
frequency-swept pulses can be considered linear, as far as diffu-
sion-weighting is considered.
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